28,155 research outputs found

    Pabble: parameterised Scribble

    Get PDF
    © 2014, The Author(s).Many parallel and distributed message-passing programs are written in a parametric way over available resources, in particular the number of nodes and their topologies, so that a single parallel program can scale over different environments. This article presents a parameterised protocol description language, Pabble, which can guarantee safety and progress in a large class of practical, complex parameterised message-passing programs through static checking. Pabble can describe an overall interaction topology, using a concise and expressive notation, designed for a variable number of participants arranged in multiple dimensions. These parameterised protocols in turn automatically generate local protocols for type checking parameterised MPI programs for communication safety and deadlock freedom. In spite of undecidability of endpoint projection and type checking in the underlying parameterised session type theory, our method guarantees the termination of end point projection and type checking

    Symplectic structure and monopole strength in 12C

    Full text link
    The relation between the monopole transition strength and existence of cluster structure in the excited states is discussed based on an algebraic cluster model. The structure of 12^{12}C is studied with a 3α\alpha model, and the wave function for the relative motions between α\alpha clusters are described by the symplectic algebra Sp(2,R)zSp(2,R)_z, which corresponds to the linear combinations of SU(3)SU(3) states with different multiplicities. Introducing Sp(2,R)zSp(2,R)_z algebra works well for reducing the number of the basis states, and it is also shown that states connected by the strong monopole transition are classified by a quantum number Λ\Lambda of the Sp(2,R)zSp(2,R)_z algebra.Comment: Phys. Rev. C in pres

    On the preciseness of subtyping in session types

    Get PDF
    Subtyping in concurrency has been extensively studied since early 1990s as one of the most interesting issues in type theory. The correctness of subtyping relations has been usually provided as the soundness for type safety. The converse direction, the completeness, has been largely ignored in spite of its usefulness to define the greatest subtyping relation ensuring type safety. This paper formalises preciseness (i.e. both soundness and completeness) of subtyping for mobile processes and studies it for the synchronous and the asynchronous session calculi. We first prove that the well-known session subtyping, the branching-selection subtyping, is sound and complete for the synchronous calculus. Next we show that in the asynchronous calculus, this subtyping is incomplete for type-safety: that is, there exist session types T and S such that T can safely be considered as a subtype of S, but T ≤ S is not derivable by the subtyping. We then propose an asynchronous sub-typing system which is sound and complete for the asynchronous calculus. The method gives a general guidance to design rigorous channel-based subtypings respecting desired safety properties

    Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot

    Full text link
    A numerical renormalization-group study of the conductance through a quantum wire side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the Kondo-regime temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the flow through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When the fluxes through the two paths are comparable, the conductance is nearly temperature-independent in the Kondo regime, and a Fano antiresonance in the fixed-temperature plot of the conductance as a function of the dot energy signals interference. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.Comment: 12 pages, with 9 figures. Submitted to PR
    corecore